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Statistical procedures using extremely discordant and concordant sib-pairs have
been developed for mapping quantitative trait loci in humans. To improve the
power of the existing methods, test statistics placing greater weight on the more
discordant or more concordant pairs are proposed. Because the optimum choice
of weights would depend on the underlying genetic model, which is not usually
known, a test with simple weights is suggested. This test is shown to have greater
power than the currently available ones for a variety of genetic models. Genet.
Epidemiol. 20:34–43, 2001. © 2001 Wiley-Liss, Inc.
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INTRODUCTION

Recent developments in molecular genetics have expanded opportunities to study
the genetic origin of complex diseases. Genetic analysis of quantitative trait loci
(QTLs) aids in understanding the genetic basis of complex traits. Sib-pair designs
are an important tool for investigating QTLs in humans [Haseman and Elston, 1972;
Fulker and Cardon, 1994; Kruglyak and Lander, 1995; Sham et al., 1997]. Sib pairs
are relatively easy to ascertain and their environments usually are similar. The meth-
ods used to analyze sib-pair data can be parametric or non-parametric.
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Non-parametric methods of linkage analysis are largely based on allele sharing.
The measure of allele sharing is the number of alleles that are identical by descent
(IBD) in both members of the pair. Roughly speaking, sib pairs with similar pheno-
types should have more alleles IBD at the marker locus when the marker and trait
loci are close to each other than two sibs with dissimilar phenotypes. Under certain
assumptions, Haseman and Elston [1972] showed that the expected squared differ-
ence of the quantitative trait values between two sibs is a linear function of the
proportion of alleles shared IBD at the test marker locus with a negative slope. The
slope is a function of the recombination fraction between the trait and marker loci.
This linear regression relationship has been widely used in sib-pair linkage analysis
of quantitative traits. Several related methods that select sib-pairs based on their trait
values have greater power than the original test [Blackwelder and Elston, 1982; Carey
and Williamson, 1991; Eaves and Meyer, 1994; Risch and Zhang, 1995].

Three types of sib pairs selected on the basis of trait values provide most power
to detect linkage for a QTL: extremely discordant (ED) sib-pairs in which one has a
high and the other a low trait value and extremely concordant (EC) for high or low
trait values [Risch and Zhang, 1995, 1996; Zhang and Risch, 1996; Zhao et al., 1997].
They investigated the power of three sib-pair designs under different genetic models
and concluded that the ED sib-pair design has the greatest power. Hence their rec-
ommendation is that the ED sib-pair design is the choice for linkage study of QTLs
in humans. Eaves and Meyer [1994] first introduced the notion of extreme sib-pairs
and also obtained the power of ED sib-pairs by simulation.

The existing procedures give each ED (EC) pair the same weight. Rao [1998] found
that these methods can be improved by exploiting the quantitative variability in the tails
of the distribution of a trait. This paper develops a test giving greater weight to the more
discordant (concordant) ED (EC) pairs. The idea is motivated by the classical two-sample
normal scores rank test [Randles and Wolfe, 1979], which gives greater weight to the
extreme ranks in the combined sample. It is shown that when the trait distribution is
normal, these weighted tests have more power than the currently used procedures.

WEIGHTED TESTS

Let y1i and y2i denote the trait values for two sibs in a sib-pair study. We assume
that the trait values have the following structure:

y1i = m + g1i + e1i

y2i = m + g2i + e2i

where m is the overall mean, g1i and g2i represent genetic contributions to the trait
values, and e1i and e2i are residuals.

We consider a single locus with two alleles A1 and A2. The allele frequencies of
A1 and A2 are p and q = 1 – p, respectively. The mean trait values of individuals with
three genotypes are defined as follows:

A2A2 A2A1 A1A1

–a d a
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Then, the additive genetic variance is s2
A = 2pq[a + (q – p)d]2 and the dominance vari-

ance is s2
D = (2pqd)2. The total genetic variance is the sum of the additive and dominance

variances, that is, s2
G = s2

A + s2
D. Let s2

E be the residual variance for each genotype and r
be the residual correlation coefficient between two sibs. The heritability owing to the trait
locus is s2

G /(s2
G + s2

E). For simplicity, we assume that s2
E = 1.

Recall the mean shared IBD statistic used by Risch and Zhang [1995] for ED
sibpairs. Let Yi denote the number of shared IBD for a given ED sib pair. Then,
under the null hypothesis H0 (no linkage), Yi has the following distribution:

Yi = 2 1 0

Probability ¼ ½ ¼

Define
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where N is the number of ED sib pairs selected for genotyping and I { Yi=0} is an indi-
cator function, which is one if the ith sib pair has zero IBD allele and zero otherwise,
the indicators I{ Yi=1} and I { Yi=2} are defined similarly. With these notations, nk is the
number of extreme discordant sibpairs who have k shared IBD, k = 0, 1, 2. The mean
test statistic is the proportion of shared IBDs among the N selected sib pairs, i.e.,

2 1 2 1 0 2

1 1 1 1
(2 ) ( ) [ ( )].

2 2 2
n n n n N n n

N N N
+ = + = − −

This test statistic is similar to the mean test of the affected sib-pair (ASP) design
[Blackwelder and Elston, 1985] and is equivalent to
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Under H0 (no linkage), (n0, n1, n2) has a trinomial distribution with parameters
(¼, ½, ¼). It follows that

0 0
( ) 0, ( ) .

2H ED H ED

N
E T Var T= =

Under the alternative hypothesis H1, there is linkage between the trait and marker
loci, and therefore (n0, n1, n2) has a trinomial distribution with parameters (p0

ED, p1
ED,

p2
ED), where p0

ED = P{ Yi = 0|ED}, p1
ED = P{ Yi = 1|ED}, and p2

ED = P{ Yi = 2|ED}. Notice
that p0

ED » ¼ and p2
ED « ¼ because the pairs are discordant. Therefore,
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where tED = p0
ED– p2

ED, and n ED = [p0
ED+p2

ED– (p0
ED– p2

ED)2].

The test statistic in equation (1) has an asymptotically normal distribution under
both H0 and H1. In terms of the parameters p0

ED, p2
ED, H0 may be re-stated as

p0
ED– p2

ED= 0,

and H1 as
 p0

ED– p2
ED> 0.

Thus, we reject H0 if TED is large. The power formula for TED is given by
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where a and 1 – b are the desired significance level and power, z1 – a is the (1 – a)th
percentile point of the standard normal distribution, and Φ is the standard normal
distribution function. Solving equation (2), we obtained the sample size formula
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Notice the nED is a decreasing function of t ED. Since z1 – a > 0 and zb < 0, the sample size
N decreases as tED increases, i.e., the larger tED

 is, the more power the test has. Hence,
tED, the difference between the probabilities of having no allele shared IBD and of shar-
ing two alleles IBD, is a key parameter determining the power of the ED sib-pair design.

The new procedure is motivated by the realization that sib pairs with one mem-
ber in the upper 5% of the trait distribution and the other in the lowest 5% are more
discordant than sib pairs in the upper and lower 10%. Thus, they are more informa-
tive than the other ED pairs and should receive more weight. Generalized weighted
test statistics are defined by ordering the ED pairs by the difference in their trait
values. Thus, ED1 is the pair with the smallest difference between the trait values
and EDN is the pair with the largest difference. The weighted statistic is
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The parameters p0
EDi = P{ Yi = 0|EDi} and p2

EDi = P{ Yi = 2|EDi} are functions of trait
values of the given sib pair. Procedures for computing p2

EDi = P{ Yi = 2|EDi} can be
obtained from Risch and Zhang [1995, 1996].

Under H0,

0 0
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where tEDi = p0
EDi – p2

EDi and nEDi = p0
EDi + p2

EDi – (p0
EDi – p2

EDi)2. As usual, the mean and
variance are conditional on the trait values.

The test for linkage is

 H0 : m = 0,   versus   m > 0.

We reject H0 and declare linnkage when Tw
ED is large. The power formula for detect-

ing linkage by using the test statistic Tw
ED in equation (4) is
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We now consider the extremely concordant sib-pair design. The test statistic of
Risch and Zhang for detecting linkage based on EC sib pairs is equivalent to
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Analogous to equation (4), a weighted test statistic based on EC sib pairs can be
defined.

The power of the EC and ED designs depends on the difference between the
conditional probabilities of having 0 and 2 alleles shared IBD. The only change is
the sign of the difference between these probabilities. Having no alleles shared IBD
is more likely for ED pairs and less likely for EC pairs.

Gu et al. [1996] proposed a test combining the ED and EC pairs. Li and Zhang
[2000] proposed a similar test incorporating both extremely discordant and concor-
dant pairs into one test. These methods gave equal weight to all ED or EC pairs.
Here, we propose the following weighted test statistic
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where for i ∈ ED
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Then, test for linkage by using the statistics Tw
C in equation (7) is equivalent to

H0 : m = 0   versus H1 :   m > 0

Reject H0 when  Tw
C is large. The power formula for detecting linkage with the com-

bined weighted test is
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SAMPLE SIZE

To illustrate that the weighted tests often have more power than non-weighted
ones, we consider the following situation: suppose N ED sib pairs are selected
for genotyping in a linkage study based on their trait values with one sib in the
top 10% of the distribution and the other in the bottom 10% (T1B1). The corre-
sponding parameters are p0

ED and p2
ED for T1B1 sib pairs. Now further sub-divide

the top 10% of the trait value into two intervals at the upper 5% point and the
bottom 10% into two intervals at the lower 5% point. The N T1B1 sib pairs fall
into four groups: 1) one sib is between the 90th and 95th percentile and the other
is between the 5th and 10th percentile; 2) one is between the 90th and 95th per-
centile and the other is in the bottom 5%; 3) one is in the top 5% and the other is
between the 5th and 10th percentile; 4) one is in the top 5% and the other is in
the bottom 5%. The corresponding parameters for the four groups are denoted by
p0

EDi, p2
EDi i = 1, 2, 3, 4, and the observed numbers of sib pairs with 0 and 2 alleles

shared IBD for the four groups are n0
i, n2

i, i = 1, 2, 3, 4. The weighted test statis-
tic for detecting linkage is defined by
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where
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The sample size formula for the weighted test is given by
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ri = Ni/N, Ni is the number of sib pairs in each of the four groups, and N1 + N2 + N3 +
N4 = N.

Similarly one can order the differences in trait values of the EC pairs and divide
them into four groups. The statistic is
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The sample size needed to achieve power 1 – b using the test statistic in (10) is
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ri = Ni/N, Ni is the number of sib pairs in each of the four groups, and N1 + N2 + N3 +
N4 = N.

The sample sizes needed by the tests TED
 in (1) and Tw

ED in equation (8) using
only ED pairs are assessed by equations (3) and (9) with ri = 0.25, i = 1, 2, 3, 4. The
prameters p0

ED, p2
ED, p0

EDi, p2
EDi depend on the trait distribution and genetic param-

eters, such as gene frequency, heritability, and dominance relationships. The numeri-
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cal results given in Table I show that the new test requires smaller sample sizes to
achieve the same power as the standard test for the additive model. Similar results
were obtained for the recessive and dominant models and can be obtained from the
authors (Z.L.).

Sample-size comparions between TEC in equation (6) and TEC
w in equation (10)

for concordant pairs are made according to the formulas in Risch and Zhang [1995]
and equation (11) with ri = 0.25, i = 1, 2, 3, 4. The numerical results presented in
Table II indicate that the weighted test is more powerful for the additive model.
Similar numerical results were obtained for the recessive and dominant models. Table
III presents sample sizes needed for the weighted and unweighted [Li and Zhang,
2000] tests using both ED and EC pairs. The table is based on an equal mixture of
ED and EC pairs and equal fractions (ri = 0.25) of each category of ED or EC pairs.
The results indicate a substantial gain in power for the new procedure.

DISCUSSION

Under the assumption that there is no recombination between trait and marker
loci and sib pairs are fully informative, we derived a weighted test for ED and EC
sib-pair designs. The weighted test is more powerful than the previously proposed
unweighted tests. The numerical results in Tables I and II show that the sample sizes

TABLE I. Required Number of ED Sib Pairs to Detect Linkage for an Additive Model a = 0.0001
and 1 – b = 0.8

H (r = 0) H (r = 0.4)

P 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3

0.1 4,716a 1,117 251 105 882 221 65 39
(6,827)b (1,647) (378) (155) (1,367) (342) (94) (52)

0.3 4,551 1,048 225 88 933 236 63 31
(6,449) (1,482) (314) (120) (1,394) (346) (88) (42)

0.5 4,532 1,040 222 86 940 238 63 30
(6,405) (1,464) (308) (116) (1,397) (347) (87) (40)

aSample size based on equation (9) for weighted test.
bSample size based on equation (3) for unweighted test.
H, heritability; r, residual correlation coefficient; P, allele frequency.

TABLE II. Required Number of EC Sib Pairs to Detect Linkage for an Additive Model
a = 0.0001 and 1 – b = 0.8

H (r = 0) H (r = 0.4)

P 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3

0.1 2,067a 501 165 106 5,860 1,233 291 145
(3,281)b (778) (235) (140) (8,650) (1,842) (419) (194)

0.3 4,045 1,060 314 166 9,776 2,328 574 263
(5,817) (1,497) (428) (221) (13,289) (3,147) (761) (342)

0.5 5,818 1,676 531 286 12,873 3,362 910 433
(7,967) (2,232) (676) (351) (16,843) (4,326) (1,136) (526)

aSample size based on equation (11) for weighted test.
bSample size based on formula in Risch and Zhang [1995] for unweighted test.
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required to achieve 80% power using the weighted tests are substantially lower than
those needed by unweighted tests. This increases the feasibility of using ED and EC
sib-pair designs.

It should be noted that the optimum weights for a weighted test statistic depend
on the underlying genetic model and trait distribution. The sample sizes in Tables I
and II are based on a bivariate normal distribution for the sib-pair trait values as in
Risch and Zhang [1995, 1996].

Although the sample sizes presented here assumed that the recombination frac-
tion q is zero, using the arguments of Risch and Zhang [1996], the appropriate sample
sizes for q > 0 can be obtained.

EC sib-pair procedures for QTL are similar to the affected sib pair (ASP) and
affected-pedigree-member (APM) methods for binary traits [Whittemore and Halpern,
1994a,b]; Whittemore, 1996] that are based on the excess of allele-sharing between
related individuals with similar phenotypes. The weights in the weighted test in this
paper play the role of the score function in Whittemore and Halpern [1994b]. The
optimum choice of weights will depend on the precise genetic model, which is often
unknown. The simple weighting scheme used here, however, improved power for all
three models considered. The smaller sample sizes required by the proposed weighted
test should enhance the practical usefulness of ED and EC designs.
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